粉煤灰的化学组成与物相形态是研究粉煤灰提铝技术的基础。我国粉煤灰以低钙灰(CaO<10%)为主,高钙灰仅产于个别地区
自20世纪50年代,波兰J.Grzymek教授以高铝煤矸石或高铝粉煤灰(Al2O3>30%)为主要原料从中提取氧化铝并利用其残渣生产水泥以来,国内外许多学者对粉煤灰提铝技术做了大量研究。从粉煤灰中提取氧化铝(氢氧化铝)或铝盐工艺有很多,但主要有碱法烧结和酸浸法两类,且大部分工艺还处于实验室研究阶段,工业化应用很少。
我国是全球第一产铝大国,2008年产出原铝1318万吨,占全球总产量的33.4%;同时也是全球第一消费大国,2008年消费量达1260万吨,占全球总消费量的32.89%。但我国铝土矿资源量却只占全球的3%,另一方面,粉煤灰开发利用是国内重要铝资源之一,相当于一个特大型铝矿。如能加大投资力度,其潜力、前景不可限量。
高附加值利用尚未形成产业规模
近年来,科技工作者着眼于粉煤灰理化特性,进行高技术含量、高附加值产品研发,从粉煤灰中提取氧化铝、羟基硅、固态铝酸钠、硅酸铝、硅酸钾、莫来石、水泥助磨剂、稀土农肥等,已日益为人们所重视,前景十分广阔。
粉煤灰的化学成分主要是二氧化硅、三氧化二铝、三氧化二铁、二氧化钛、氧化镁、氧化钙以及其他碱金属氧化物和稀有元素。其中三氧化二铝含量较高的粉煤灰被称为高铝粉煤灰,具有很高的开发利用价值。依据目前技术水平,含三氧化二铝30%以上的就可视为高铝粉煤灰。
普通粉煤灰三氧化二铝含量平均为25%~28%,我国35处粉煤灰样品三氧化二铝平均含量为27.1%。国外粉煤灰亦大体类似,日本粉煤灰三氧化二铝平均含量为25.86%,美国为20.81%,英国为26.99%,德国为24.93%,只有波兰高达32.39%。
上世纪60年代,波兰人曾以石灰石烧结法制取氧化铝,我国安徽、宁夏、江苏等地也曾以类似方式作过试验,在提取氧化铝同时生产活性硅酸钙,但未能形成规模产业。
技术研发不断突破,应用领域不断开拓
经国家发改委批准,两年前,内蒙古鄂尔多斯以高铝粉煤灰为原料,用石灰石烧结法在制取氧化铝同时联产水泥项目成功实现产业化。项目投资18亿元,年产氧化铝40万吨,近期即将投产。去年初,大唐国际托克托电厂与同方环境公司合作,利用托克托电厂粉煤灰制取氧化铝联产羟基硅及电热法炼制铝硅钛合金技术成果发布。托克托电厂年耗煤1600万吨,排放粉煤灰400万吨,灰中氧化铝含量高达54%以上,在提取羟基硅后三氧化二铝/二氧化硅(A/S)达2.2。如用于制取氧化铝,回收率按85%计,每2.2吨粉煤灰即可制取1吨氧化铝,400万吨灰可产出180万吨氧化铝,这比山东“非中铝”企业用进口矿石生产氧化铝还更具有优势(每3吨矿石产出氧化铝1吨)。
此外,河南巩义成功进行了运用常温常压波加速溶出新技术将粉煤灰与废弃低品位铝土矿制取氧化铝的半工业化试验,郑州龙昌公司利用上述技术从粉煤灰中提取羟基硅的小型试验也获得成功,羟基硅成本不到2000元/吨,所产未经脱水羟基硅以3000元/吨售出。这些技术为粉煤灰高附值开发利用打下了基础。
粉煤灰的另一个高附加值开发利用领域是电热熔炼铝硅钛合金和铝硅铁合金。氧化铝含量大于30%的粉煤灰用作炼制铝硅铁时可炼得含铝40%以上的合金,除了用于炼钢脱氧外,还可取代硅铁用作炼镁还原剂。
炼制铝硅铁合金,应力求提高合金中铝含量,降低铁含量。焦作李封铁合金厂,试生产期间产出的铝硅铁成分平均如下:硅为34%,铁为12.5%,铝为47.8%,钛为3.3%。郑州轻金属研究院曾以铝硅铁取代硅铁作还原剂炼镁,试验所采用的铝硅铁合金成分为:铝含量35.41%,硅含量41.54%,铁含量16.76%。还原温度1100℃时,镁收率为65.5%。与当时以75硅铁为还原剂炼镁的各项指标相比,还原剂单耗略有降低,镁收率则提高5%~6%,温度降低50℃,具有一定优势。
利用途径多样,节能减排优势明显
我国具有高铝粉煤灰资源优势,除了内蒙古外,还有“煤都”山西朔州。朔州煤储量423亿吨,年产煤上亿吨,煤灰中氧化铝含量高于高岭土,而氧化铁含量却相对较低。经对平鲁一矿、二矿及怀仁煤矿等3个煤矿煤灰的化学成份进行化验分析,氧化铝含量依次为:45.73%,41.24%,54.22%;氧化铁含量分别为:2.4%,0.44%,0.8%。此外,经验证,煤矸石中氧化铝含量亦在40%以上。朔州的南邻原平,电厂排放粉煤灰氧化铝含量也高达40%,并有大量废弃铝土矿。
以粉煤灰为主要原料,电热熔炼铝硅中间合金,以原铝或再生铝进行稀释,配制各种牌号铝硅合金,不仅是综合利用环保项目,而且与以原铝或再生铝与工业硅重熔合成的铝硅合金相比,成本低,可节省能耗约20%,减排大量二氧化碳及固体废弃物,降低建设用地和投资,还可大大改善产品质量,提高产品成品率,是国家政策支持的项目。
虽然如此,但铝硅合金毕竟是高能耗产品,其适用范围有一定局限性。一般说来,在高铝粉煤灰出产地、电力充裕电价低的地区、电铝联营企业,以及因政策规定进入门槛提高而被迫停产、有闲置适用(便于改造)的矿热炉、整流设备的企业,都是其用武之地。在不具备发展、推广条件的地区、企业,笔者认为仍应以通常方式开发利用,如上所述,利用粉煤灰生产氧化铝、羟基硅、固态铝酸钠等高附加值产品,既可大批量消化粉煤灰,又有着可观的经济效益。(作者系中国铝冶炼技术开发中心专家顾问)
相关链接 利用率仅为发达国家一半
对燃煤电厂而言,粉煤灰曾是一大包袱。近年来,随着循环经济的推行、发展,国家鼓励政策陆续出台,特别是粉煤灰综合利用技术的新发展,情况有所改变,但因旧灰堆存量大,新灰利用率仍较低(国内粉煤灰利用率只有40%,是发达国家利用率的一半),全国每年仍有约两亿吨新灰未被消化。因而,如何开展综合利用,提高利用率,使其化害为利、变废为宝,仍然是循环经济的重要课题。
国内目前粉煤灰的综合利用方式,仍以大批量利用为主,用作建筑材料的部分占总消化量的50%以上,如粉煤灰水泥、加气混凝土砌块、烧结陶粒、烧结砖、蒸压砖、轻型中空隔墙板、复合保温外墙板、保温屋面板、轻质中空楼板等系列板材等;作为填充料,用于道路、机场、港区建设工程的约占总消化量的20%以上;用于农业方面改良土壤、制取农用肥料的约占消化量的20%以上。
炼制铝硅钛合金应注意什么?
虽然铝硅钛合金与铝硅铁合金以粉煤灰为主要原料时其氧化铝含量并无一定额度区分,但两种合金性质截然不同,前者是铝合金,后者是铁合金,铝合金对含铁量有严格要求,原料含三氧化二铁量一般不得大于0.8%,中间合金含铁量不大于1.2%,不是所有粉煤灰都适用。炼制铝硅合金氧化铝含量必须使A/S达到1.3以上才能练出含铝55%以上的粗合金。
此外,灰的化学活性也不可忽视,化学活性差反应速度下降,会导致电耗增加,产量降低。一般来说,灰中氧化铝含量应大于40%。托克托电厂所排放的灰或怀仁煤产出的灰,氧化铝含量都在50%以上,可直接用于配料制团。含氧化铝40%以下的粉煤灰为使其A/S达到1.3以上,必须添加适量含铝矿物,如被废弃精选低品位铝土矿、红柱石、硅线石等,如无上述含铝矿物,可先行提取羟基硅,也可使其A/S达到工艺要求。例如含氧化铝28%以上的粉煤灰,经高梯度除铁后,三氧化二铁降至0.6%以下,氧化铝含量可提高达30%以上。若其活性良好(须经测试),每3吨灰可提取羟基硅1吨,产出渣两吨,渣中氧化铝A/S可达1.3以上,可用作炼制铝硅钛合金原料。
(一)随着温度升高,碳酸钠和生石灰的烧结效果逐渐变好。但随着温度升高,利用碳酸钠进行烧结时,粉煤灰烧结熟料中氧化铝溶出率增长速度要快得多,而利用生石灰烧结时,其氧化铝溶出率随着温度增长及其缓慢。
(二)碳酸钠与氧化钙的混合物作为烧结剂,在烧结过程中的主要影响因素为碱比,其次为烧结温度和钙比,影响最弱的是烧结时间。
随着环保要求日益严格和高品位铝土矿资源的日趋枯竭,可以预见粉煤灰作为一种非传统铝资源具有良好的利用发展前景。目前,限制粉煤灰提铝技术大规模工业化应用的因素很多,除了国家、地方相关政策的鼓励扶持和市场需求等原因外,从上述分析可知技术上也有很多不足之处。因此应进一步深入研究,对现有粉煤灰提铝技术进行改进完善,同时还应积极探索新的粉煤灰提铝技术工艺,在满足环保要求的同时,努力提高其综合经济效益,达到社会、环境、经济的有机统一。从这个意义上讲,实现高效、节能、低耗、减量(废渣、废气),避免二次污染是粉煤灰提铝技术发展的趋势。
免责声明:本文来源于网络,版权归原作者所有,且仅代表原作者观点,转载并不意味着铝加网赞同其观点,或证明其内容的真实性、完整性与准确性,本文所载信息仅供参考,不作为铝加网对客户的直接决策建议。转载仅为学习与交流之目的,如无意中侵犯您的合法权益,请及时与0757-85529962联系处理。